Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Ultra-adaptive holographic computational imaging for seeing through random scatter, fibers, and around corners

Project description

A holographic approach to removing light scattering from practical imaging systems

Imaging systems play an instrumental role in modern life, from smartphones and automotive cameras to microscopes that are critical for clinical diagnostics. Random light scattering in complex samples limits the penetration depth of most imaging systems, but can be corrected in a small field-of-view using spatial light modulators in a technique termed ‘wavefront shaping’. The EU-funded project See-Beyond will investigate a radically different route to remove the fundamental barriers that currently prevent the use of wavefront shaping in practical imaging systems. The project's approach relies on computationally emulating the optimal complex 3D wavefront correction, derived from a small number of rapid holographic measurements. It is expected to significantly simplify the required hardware, and improve speed and imaging quality.

Objective

Optical imaging systems play an instrumental role in our modern life, from smartphones and automotive cameras to microscopes that are critical for clinical diagnostics. However, the penetration depth of even the most advanced systems is still unbearably limited by the inherent random scattering of light in complex samples. Examples span many applicative fields, including scattering in tissues and fog, limiting microscopes and laser-based systems. For decades, the notion of correcting scattering seemed unfeasible since it requires control of billions of optical modes. This conception changed a decade ago with the paradigm-shifting revolution of wavefront-shaping, demonstrating that scattering can be physically corrected using spatial light modulators with a number of pixels orders-of-magnitude smaller than the number of scattered modes. Wavefront-shaping led to astonishing breakthroughs, including my own works, from focusing through visually-opaque barriers to imaging around corners. However, beyond laboratory demonstrations, there is a fundamental gap in applying these revolutionary notions in most practical imaging applications, as wavefront-shaping is based on a physical, inherently 2D, limited-speed correction to a volumetric dynamic scattering problem, and it relies on known ‘guide-stars’ at the target. I propose a radically different route to remove these fundamental barriers and unleash the full applicative potential of wavefront-shaping, by shifting the burden from the physical hardware to a digital, naturally-parallelizable computational process. My approach is based on computationally emulating the optimal 3D wavefront-correction, found using only a few unique rapid holographic measurements. My solution is enabled by our recent discovery of guide-star free wavefront-shaping, where the target themselves serve as guide-stars, and the great increase in computational power. Its impact spans across important domains, from endoscopy to non-line-of-sight imaging.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-COG

See all projects funded under this call

Host institution

THE HEBREW UNIVERSITY OF JERUSALEM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 999 875,00
Address
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 JERUSALEM
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 999 875,00

Beneficiaries (1)

My booklet 0 0